ABOUT THIS POLICY

The following calculations policy has been written by the Mathematics Lead Teachers from Bere Regis Primary School, Lytchett Matravers Primary School, Lytchett Minster School, Sandford Primary School, Upton Infant School and Upton Junior School.

Emma Adcock	\Leftrightarrow	Bere Regis Primary School	bereregis.dorset.sch.uk
Laura Dominey		Lytchett Matravers Primary School	lytchettmatraversprimary.org.uk
Amy Foster		Lytchett Matravers Primary School	lytchettmatraversprimary.org.uk
Jo Casson		Lytchett Minster School	lytchett.org.uk
Julie Johnson	Sondtord St Morin's	Sandford Primary School	sandfordprimary.dorset.sch.uk
Daniel Williams		Upton Infant School	uptoninf.dorset.sch.uk
Liz Lawler		Upton Junior School	uptonjun.dorset.sch.uk

We are grateful for the advice from Jennie Fellowes, Dorset Local Authority's Primary Mathematics Advisor in writing this policy.

INTRODUCTION

The following calculations policy has been written in line with the programmes of study taken from the National Curriculum for Mathematics (2014). Our schools have worked in close partnership to ensure continuity of written methods across all Pyramid Schools, getting the very best for all of our children.

Upton Junior School

This policy provides guidance on the calculation strategies, methods and progression from the Early Years Foundation Stage (Reception) to Key Stage 4 (secondary education). It aims to help parents to help their children, as well as provide guidelines for teachers to provide consistency in the teaching of mathematics across our schools. Although not exhaustive, it outlines the key strategies taught across our schools.

AIMS OF THE POLICY

Through the Mathematics National Curriculum, our schools aim to work together to ensure that all pupils:

1. become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
2. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
3. can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This policy will ensure consistency and progression in our approach to the learning and teaching of calculations across our pyramid schools. It will enable our children, teachers and parents to work in partnership, developing an efficient, reliable, formal written method of calculation for all operations and to use these methods accurately with confidence for understanding.

Upton Infant School

How to USe this policy

It is vital that we create a generation of children who understand the mathematics that they are learning. Not only can they perform a 'set skill', but they can explain and understand exactly what they are doing with each number and more importantly, why.

As you explore this policy, you will find the following prompts to help you. The content is set out with each section beginning with the vocabulary that children will come across for each operation ($+-\mathrm{x} \div$). Below is a key to explain why each of these is so important to our children's education.

Age Related Expectations

Top Tips!

Developing Mental Methods

When you see this symbol, you will also find the government's 'Age Related Expectations' (ARE) as set out in the national curriculum 2014. These expectations are what we would expect a child of this age to achieve in terms of mathematics within that Key Stage or Year Group, by the end of their time within this stage. A full breakdown of these ARE for each year group can be found within the programmes of study online, at tinyurl.com/NatCur2014.

These are designed to remind you of different aspects to consider when teaching our children. For example, to use a wide range of manipulatives (mathematical equipment and resources) when teaching mathematics, as this reinforces what is actually happening to numbers and provides a concrete approach before moving on to more pictorial (pictures) and abstract (signs and symbols) approaches. Children will record calculations in a variety of ways that do not necessarily look like the kind of 'sums' parents remember. This is because written calculations are not the ultimate aim: the children's understanding and fluency within mathematics is.

This outlines mental calculation strategies, including the use of jottings, vocabulary to be developed and the key number facts that children will need to know mentally in order to become fluent in the fundamentals of mathematics. Children will use mental methods as their first port of call when appropriate, but for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence. The strategies taught aim to help children understand what they are doing and why they are doing it, and the relationships between numbers which can then be applied to develop speed with mental calculations.

Scan to watch video

Take a look at videos created by the teachers and children of our schools, explaining how to use different opperations in this policy. You can scan them with your smart phone or access them on our school websites.

If you find something that you would like to see explained a little further, or in more depth, please contact the Mathematics Lead Teacher from your school.

Equipment

We use a variety of equipment to support children's learning in mathematics. These 'manipulatives' play a useful role in the teaching of maths, particularly in the teaching of concepts. Here is a description of some of the equipment the children use frequently:

Numicon

Numicon apparatus is multisensory equipment. The Numicon patterns are arrangements of holes in plastic shapes that correspond to the numbers 1 to 10.

Counting straws are arranged singularly and in bundles of ten to help children to visualise the value of the digits in 2-digit numbers.

Dienes' Apparatus (or Base Ten cubes) are organised into ones cubes, tens rods, hundreds sheets and thousands cubes. They are used to visualise numbers up to 4 digits.

Bead strings are moveable beads, typically arranged in groups of 10, similarly to an abacus.

Unifix cubes can be grouped together to make numbers in different arrangements, for example in groups of 2 ' $\mathrm{s}, 5$'s or 10's.

Cuisenaire rods can be used to represent numbers. Each piece can be attributed a number, which is also equal to its weight and length (for example a red piece can be attributed the value of 2 , is 2 cm long and weighs 2 g).

Addition +

add and
plus sum

more than	join
addition	bigger
count on	together
total	more
increase	

Foundation Stage

Age Related
Expectations

- Use the language of 'more' and 'fewer' to compare two sets of objects
- Find the total number of items in two groups by counting all of them
- Say the number that is one more than a given number
- Finds one more from a group of up to five objects, then ten objects
- In practical activities and discussion, beginning to use the vocabulary involved in adding

Begin to
relate addition to combining sets of items together

Find one more
than a number

Adding using fingers and other practical resources

Introduction
of symbols to
form number sentences

$3+2=5$

Develop understanding of addition as counting steps along a number track

Develop understanding of addition as counting steps along a number line

Key Stage One

- solve missing number problems such as $7=\square-9$

Age Related Expectations

- solve addition problems using objects and pictorial representations
- apply their increasing knowledge of mental and written methods
- recall and use number bonds, addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add one and two-digit numbers using objects, pictorially and mentally
- add three one-digit numbers
- show that addition can be done in any order (commutative)

Developing mental methods

Mental additon and fluency is developed through frequent practise of strategies taught, including addition facts to 20 and related facts to $\mathbf{1 0 0}$, and addition of 1 and $\mathbf{2 - d i g i t}$ numbers (including three 1-digit numbers).

Developing knowledge and
understanding
of number
e.g.

$7+3=10$

$6+4=10$

$9+1=10$
bonds to 10

Using bead strings to count on by bridging
through 10

Understand that addition is commutative (can be done in any order)

$$
3+2=5 \quad \text { or }
$$ $2+3=5$

Vary position
of missing numbers in a number sentence

Counting on in jumps of one
using a
hundred
square

$22+6$

Dienes' Apparatus

Counting Straws

Addition of 2-
digit numbers using practical resources

Numicon

Counting on in jumps of ten and one using a hundred square

Vary position of missing numbers in a
number sentence
$21+$ \square $=43$
$\square+32=58$
Addition using
a blank
number line
(putting
biggest
number first)

Using a blank number line, add the ones in one jump (using the known fact

$6+2=8)$

Using a blank number line, adding the tens in one jump and the ones in one jump

Adding by
partitioning,
keeping the
first number whole

$26+32$

$26+30+2$
$26+30=56$ (add the tens)
$56+2=58$ (add the ones)
Adding by
partitioning
into tens and
Adding by partitioning into tens and ones

$$
50+8=58
$$

e.g. adding 9 / 19 / 29 or 8 / 28 / 38
Adding by

$$
26+20=46
$$

46-1 = 45 compensation

Age Related Expectations

ampule

Key Stage Two

- Estimate the answer to a calculation and use the inverse operation to check answers.
- Solve problems involving addition, including missing number problems, using number facts, place value, and more complex addition
- Add numbers with more than 4 digits using column addition
- Add increasingly large numbers mentally
- Solve multi-step addition problems, deciding which operation and method to use and why

Developing mental methods
Children should have regular practise of mental addition, including multiple numbers. Explore how children visualise numbers in their heads, and encourage them to use a variety of methods for manipulating numbers. They should be able to add 3 1-digit numbers mentally and any pair of 2-digit numbers mentally, using a strategy of their choice.
$45+17$
Begin to use
expanded
written
methods

T	U	
40	5	
+	10	7

KS4
Key Stage Three

- solve addition and subtraction multi-step problems in contexts, deciding which

4040 9 年
 unu uich

Age Related Expectations operations and methods to use and why

- solve problems involving addition
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the 4 operations

In Key Stage Three onwards, the methods and strategies taught in the primary schools during Key Stages One and Two, as outlined over the previous pages, continue to be embedded to develop fluency and understanding.

Subtraction -

subtract subtraction take away take less
less than
minus
reduce
fewer count back difference how many left

Foundation Stage

- Use the language of 'more' and 'fewer' to compare two sets of objects
- Finds one less from a group of up to five objects, then ten objects
- In practical activities and discussion, beginning to use the vocabulary involved in subtracting

Age Related
Expectations
,

Take away from
groups of items
 -

Taking away by crossing out

Introduction of symbols to form number sentences
$5-2=3$

Counting back on a number track

Counting back on a numbered number line

Key Stage One

- solve subtraction problems using concrete objects and pictorially

Age Related Expectations

- subtract 1 and 2 -digit numbers using objects, pictorially and mentally - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction - use to check calculations and solve missing number problems

Developing mental methods

Children should apply their increasing knowledge of mental methods, subtract mentally, recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

27-6

Counting back in jumps of one using a hundred square

27									- 6
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Using bead 13-5
strings to count back by
bridging through 10

58-26

Counting back
in jumps of ten and one using a hundred square

Counting back on a blank number line

45-23=22

progressing to subtracting the ones in a single jump:

$$
45-23=22
$$

progressing to subtracting the tens in a single jump:

$$
45-23=22
$$

$$
81-57
$$

Subtraction using compact written method

$T \quad U$
$7 \quad 11$
$-\quad 5 \quad 7$
24

Subtraction
using compact written method
exchanging
across columns

403-127
$T \quad U$
$34^{9} g 3$
$-\begin{array}{r}127 \\ \hline 276 \\ \hline\end{array}$

Subtraction of
decimal numbers to 2 decimal places using compact written method
£2.31-£1.53
$£^{1} 2^{12} \cdot 3_{1}^{x}$
£ 1.53
£ 0.78

Subtraction
using negative numbers
$-12-4=-16$

Key Stage Three

Age Related Expectations

- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving subtraction
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the 4 operations

In Key Stage Three onwards, the methods and strategies taught in the primary schools during Key Stages One and Two, as outlined over the previous pages, continue to be embedded to develop fluency and understanding.

Multiplication x
 times multiply multiplication groups of product

Foundation Stage

- Begin to identify own mathematical problems based on own interests and fascinations

Age Related Expectations

- Solve problems including doubling
\qquad
e.g. pairs of socks

Grouping objects into equal groups

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Counting in
jumps - finding
patterns using a
hundred square

	1\%3*5*7 7 - 10
	11.121314 .151617161920
Counting in	
jumps - finding	
patterns using a	51 52. 53 54 55 56 57 58 5960
hundred square	

Key Stage One

Age Related Expectations

- calculate multiplication statements within the multiplication tables and write them using the multiplication (\times) sign - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - solve multiplication problems using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts

Developing mental methods

- Recall and use multiplication facts for the 2,5 and 10 multiplication tables and begin to solve related problems mentally

Repeated addition using practical resources

e.g. 3×5 using Numicon

(
 0
 08 000

Arrays - using practical resources

Multiplication by repeated addition
$3 \times 5=5+5+5=15$

Drawing arrays using dots

For example $\mathbf{3 \times 5}$ has the same answer as $\mathbf{5 \times 3}$

Commutativity

Multiplying a 2-digit number by a 1-digit number:

Grid Method

x	20	3
4	80	24

	KS4 Key Stage Two
	- Solve multiplication problems, including missing number problems - Recall multiplication facts and tables for up to 12×12
	- Use place value, known and derived facts to multiply and divide mentally, including multiply by 0 and 1
	- Identify common factors, common multiples and prime numbers
Age Related	- Multiply numbers up to 4 digits by a 1 or 2-digit number using a formal written method, including long multiplication for 2-digit numbers
Expectations	- Multiply numbers mentally drawing upon known facts
	- Multiply whole numbers and those involving decimals by 10, 100 and 100
	- Perform mental calculations, including with mixed operations and large numbers

Developing mental methods

Know by heart multiplication facts for $2 x, 3 x, 4 x, 5 x, 8 x$, 10x tables and related division facts.

Multiplying a 2-digit number by a 1-digit number:

It is important that children know that when multiplying by ten it is not just a matter of adding a zero! The digits move left, and a place holder (0) may
have to be inserted.

Grid Method

Multiplying a 3-digit number by a 1-digit number:

x	100	20	3
6	600	120	18

Multiplying two 2-digit numbers:

x	20	3		
40	800	120		
2	40	6	\longrightarrow	920
:---:				
966				

	23	
Expanded Column Method	$\times \quad 7$	
	21	(3×7)
	140	(20×7)

Multiplying a 3-digit number by a 1-digit number:

	246	
	$\times \quad 7$	
Expanded	$\times 2$	(6×7)
Column Method	280	(40×7)
	1400	(200×7)

Multiplying a 2-digit number by a 1-digit number:

Contracted
Column Method

23

161
2

Multiplying a 3-digit number by a 1-digit number:
Contracted
Column Method
246
7
$\times \quad 7$
1722
34

Contracted	
Column Method	3875
	x 6 23250 543

Multiplying a 2-digit number by a 2-digit number:

Long

 Multiplication

1
2160
2736
1

Multiplying numbers involving decimals:

Contracted
Column Method
118.35

473.40

312

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

Age Related Expectations

- solve problems involving multiplication
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- identify common factors, common multiples and prime numbers
- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the 4 operations

In Key Stage Three onwards, the methods and strategies taught in the primary schools during Key Stages One and Two, as outlined over the previous pages, continue to be embedded to develop fluency and understanding. Additionally, the Gelosia method is taught as outlined here:

For 35×19, draw a grid and Step1:

Draw dashed lines as shown. In each cell, multiply
Step 2:

Step 3:

Step 4: write 35 across the top and 19 down the side. together the two edge digits and write the answer as two digits in the sqaure.

Add up along the diagonals and write the results outside

Finally read off the totals you have worked out. Here they read 0665. Therefore, the answer is:

665

35

$3 \quad 5$

35

Division !

divide
division
share
group sort remainder left over
how many lots of repeated subtraction split

Foundation Stage

Age Related Expectations

- Begin to identify own mathematical problems based on own interests and fascinations
- Solve problems including halving and sharing

Sharing between children

Sharing equally

Solving physically

Key Stage One

Age Related Expectations

- calculate division statements and write them using the division (\div) sign
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - solve problems involving division, using materials, arrays, repeated subtraction, mental methods, and multiplication and division facts, including problems in contexts.

Developing mental methods

- recall and use division facts for the 2,5 and 10 multiplication tables and begin to solve related problems mentally

Sharing Spiders

Sharing using e.g. counters

Sharing
Showers

$10 \div 3$

Grouping using Numicon

Grouping

e.g. How many 4's in 15 ?

Division using practical resources

Using Cuisenaire Rods:

Repeated Subtraction

Using a number line:
$16 \div 5=3 r 1$

Age Related Expectations

Key Stage Two

- Solve division problems, including missing number problems
- Be able to divide by 12
- Divide whole numbers and those involving decimals by 10, 100 and 1000 - Use the formal written methods of long and short division to divide numbers up to 4 digits by a 2-digit whole number
- Show remainders as whole numbers, fractions or by rounding - Perform mental calculations, including with mixed operations and large numbers
- Identify common factors, common multiples and prime numbers
$72 \div 4:$

Dividing by
$40 \div 4=10$
$32 \div 4=8$
$72 \div 4=18$

Using a number line to take off chunks
$74 \div 4$

Repeated subtraction of chunks

Repeated subtraction of chunks on a vertical number line

Repeated subtraction of chunks on a vertical number line

Repeated subtraction of chunks, e.g.

Division by chunking

Repeated subtraction of chunks, e.g.

$$
534 \div 17:
$$

Long division

$\underbrace{7 \quad 2}{ }^{24 \times 3}$

$$
560 \div 24=28 \quad r 8
$$

$432 \div 15$:

			2	8
		4	3	2

	3	0	0
1	3	2	

$\begin{array}{rrrr}1 & 2 & 15 \times 8 \\ & 1 & 2 & \end{array}$
showing answer
as a fraction

$$
\begin{gathered}
\frac{12}{15}=\frac{4}{5} \\
432 \div 15=28 \begin{array}{l}
4 \\
5
\end{array}
\end{gathered}
$$

$432 \div 15:$

Long division
showing answer
as a decimal
$\begin{array}{llllllll} & & & 2 & 8 & .8 \\ & 5 & 4 & 3 & 2 & .0\end{array}$

3	0	1
1	3	2

$\begin{array}{llll}-1 & 2 & 0 & \\ & 1 & 2 & 0\end{array}$

1	2	0
		0

$$
432 \div 15=28.8
$$

$432 \div 15=28.8$

$318 \div 3$

Compact short division

$318 \div 3=53$

$560 \div 24$

Compact short
division
showing answer
with a
$245^{5} 6^{8} 0$
remainder
$318 \div 3=53$

| | $560 \div 24$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Compact short
 division
 showing answer
 as a decimal | 24 | $0 \quad 2 \quad 3 \cdot$ | 3 | 3 |

Compact short
division of
decimal
numbers
$15.4 \div 4$

Division
involving
negative
numbers
$-40 \div 8=-5$
$-40 \div-8=5$

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Age Related Expectations
divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

- solve problems involving division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- identify common factors, common multiples and prime numbers
- perform mental calculations, including with mixed operations and large numbers
- use knowledge of the order of operations to carry out calculations involving the 4 operations

In Key Stage Three onwards, the methods and strategies taught in the primary schools during Key Stages One and Two, as outlined over the previous pages, continue to be embedded to develop fluency and understanding.

Glossary of Terms

Array	An ordered collection of counters, numbers etc. in rows and columns.
Commutativity	Addition and multiplication are both commutative as they can be done in any order. Division and subtraction are not commutative.
Difference	The amount by which one number or value is greater than another, obtained by subtracting the smaller from the larger.
Hundred Square	The numbers 1-100 arranged in uniform rows and columns to aid the understanding of number and to assist with calculations.
Inverse operation	The inverse operation is that which reverses the effect of the other one. Addition and subtraction are inverse operations. Multiplication and division are inverse operations.
Logical	Using an approach that is structured, logical, clear and organised to solve a given problem or calculation.
Manipulatives	Manipulatives are objects which are designed so that a learner can perceive some mathematical concept by manipulating them. The use of manipulatives provides a way for children to learn concepts in a developmentally appropriate, hands-on way.
Mental Methods	Using methods and strategies in your head to solve a given problem.
Multiple	When two numbers are multiplied together, the result is called a multiple.
Number bonds	A pair of numbers with a particular total e.g. number bonds to ten are all pairs of whole numbers with the total 10.
Number sentence	A mathematical sentence involving numbers. For example: $3+6=9$.
Number line	A line where numbers are represented by points upon it.
Partition	To split a number into component parts. For example: the two-digit number 38 can be partitioned into $30+8$ or $19+19$.
Place Value	The value of a digit that relates to its position or place in a number. For example: in 1482 the digits represent 1 thousand, 4 hundreds, 8 tens and 2 ones respectively.
Product	The result of multiplying two or numbers together.
Remainders	What is 'left over' when one number cannot be exactly divided by another.

Useful Websites

There are many websites which can be used to support your child's learning in maths. The following websites are some of those used across our schools:

Department for Education

Mathletics

B|BC

Crickweb.co.uk

PitimaryGames:

National Curriculum tinyurl.com/NatCur2014
nrich
nrich.maths.org
National Centre for Excellence in the Teaching of Mathematics ncetm.org.uk

Mathletics mathletics.co.uk

BBC Bitesize

 bbc.co.uk/bitesizeCrickweb Maths crickweb.co.uk

Topmarks Maths topmarks.co.uk

ICT games
ictgames.com

Primary Games primarygames.com

This calculations policy has been written by the Mathematics Lead Teachers from Bere Regis Primary School, Lytchett Matravers Primary School, Lytchett Minster School, Sandford Primary School, Upton Infant School and Upton Junior School.

